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Vector Valued Functions

In general, a function is a rule that assigns to each 
element in the domain an element in the range.

A vector-valued function, or a vector function, is 
simply a function whose domain is a set of real 
numbers and whose range is a set of vectors.

We are most interested in vector functions r whose 
values are three-dimensional vectors.

This means that for every number t in the domain of 
r there is a unique vector in V3 denoted by r(t).
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If f (t), g(t), and h(t) are the components of the vector r(t), 

then f, g, and h are real-valued functions called the 

component functions of r and we can write

r(t) = f (t), g(t), h(t) = f (t)i + g(t)j + h(t)k

We use the letter t to denote the independent variable because 

it represents time in most applications of vector functions.
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Example

If r(t) = t 
3, ln(3 – t),      

then the component functions are

              f (t) = t 
3      g(t) = ln(3 – t)         h(t) = 

By our usual convention, the domain of r consists of all 
values of t for which the expression for r(t) is defined.

The expressions t 
3, ln(3 – t), and    are all defined when 

3 – t > 0 and t  0.

Therefore the domain of r is the interval [0, 3).
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Limit of a Vector Function

The limit of a vector function r is defined by taking 
the limits of its component functions as follows.

If r(t) = ‹f(t), g(t), h(t)›, then

Limits of vector functions obey the same rules as limits 
of real-valued functions.

lim ( ) lim ( ), lim ( ), lim ( )
t a t a t a t a

t f t g t h t
� � � �

 � �r
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Continuous Vector Function

A vector function r is continuous at a if

We see that r is continuous at a if and only if its 
component functions f, g, and h are continuous at a.

There is a close connection between continuous vector 
functions and space curves.

lim ( ) ( )
t a

t a
�

r r
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Space Curves

Suppose that f, g, and h are continuous real-valued 
functions on an interval I.

Then the set C of all points (x, y, z) in space, where
                         x = f (t)       y = g(t)       z = h(t) 
   and t varies throughout the interval I, is called a space 

curve.
These equations are called parametric equations of C 

and t is called a parameter.

We can think of C as being traced out by a moving 
particle whose position at time t is (f (t), g(t), h(t)).
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If we now consider the vector function r(t) = f (t), g(t), h(t), 

then r(t) is the position vector of the point P(f (t), g(t), h(t)) on C.

Thus any continuous vector 

function r defines a space 

curve C that is traced out by 

the tip of the moving vector 

r(t), as shown in Figure 1.

Figure 1

C is traced out by the tip of a moving 
position vector r(t).
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Example

Sketch the curve whose vector equation is

r(t) = cos t i + sin t j + t k

Solution:
The parametric equations for this curve are         
           x = cos t      y = sin t      z = t

Since x2 + y2 = cos2t + sin2t = 1, the curve must lie on the 
circular cylinder x2 + y2 = 1.
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Since z = t, the curve spirals upward around the cylinder as t 
increases. The curve, shown in Figure 2, is called a helix.

Figure 2
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The corkscrew shape of the helix in Example 4 is familiar from its 
occurrence in coiled springs.

It also occurs in the model of DNA (deoxyribonucleic acid, the 
genetic material of living cells). 

In 1953 James Watson and 
Francis Crick showed that 
the structure of the DNA 
molecule is that of two linked, 
parallel helixes that are 
intertwined as in Figure 3.

A double helix

Figure 3
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Using Computers to Draw 
Space Curves
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Space curves are inherently more difficult to draw by 
hand than plane curves; for an accurate representation we 
need to use technology.

For instance, Figure 7 shows
a computer-generated graph 
of the curve with parametric 
equations

x = (4 + sin 20t) cos t     
y = (4 + sin 20t) sin t 
z = cos 20t

It’s called a toroidal spiral 

because it lies on a torus.

Figure 7

A toroidal spiral
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Another interesting curve, the trefoil knot, with 
equations

  x = (2 + cos 1.5t) cos t 
y = (2 + cos 1.5t) sin t   
z = sin 1.5t

Figure 8

A trefoil knot
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Even when a computer is used to draw a space curve, 

optical illusions make it difficult to get a good impression 

of what the curve really looks like. (This is especially 

true in Figure 8.) 

The next example shows how to cope with this problem.
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Example 
Use a computer to draw the curve with vector equation

r(t) = t, t2, t3. This curve is called a twisted cubic.

Solution:
We start by using the computer to plot the curve with 
parametric equations x = t, y = t2, z = t3 for –2  t  2.

   The result is shown in Figure 9(a), but it’s hard 
to see the true nature of  the curve from that graph 
alone.
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Figure 9(a)

View of the twisted cubic

Most three-dimensional computer graphing 
programs allow the user to enclose a curve or surface 
in a box instead of displaying the coordinate axes.
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When we look at the same curve in a box in Figure 9(b), 
we have a much clearer picture of the curve.

Figure 9(b)

View of the twisted cubic
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We can see that it climbs from a lower corner of the box 
to the upper corner nearest us, and it twists as it climbs.

We get an even better idea of the curve when we view it 
from different vantage points.

Figure 9(c) shows the result of rotating the box to give 
another viewpoint.

Figure 9(c)

View of the twisted cubic
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Figures 9(d), 9(e), and 9(f) show the views we get when 
we look directly at a face of the box.

In particular, Figure 9(d) shows the view from directly 
above the box.

Figure 9(d)

Figure 9(e)

Figure 9(f)
Views of the twisted cubic
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It is the projection of the curve on the xy-plane, namely, 
the parabola y = x2.

Figure 9(e) shows the projection on the xz-plane, the 
cubic curve z = x3.

It’s now obvious why the given curve is called a twisted 
cubic.
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Another method of visualizing a space curve is to draw it 
on a surface.

For instance, the twisted cubic in Example 7 lies on the 
parabolic cylinder y = x2. (Eliminate the parameter from 
the first two parametric equations, x = t and y = t2.)

Figure 10 shows both the 
cylinder and the twisted cubic,
and we see that the curve 
moves upward from the 
origin along the surface of the 
cylinder.

Figure 10
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We also used this method in Example 4 to visualize the 
helix lying on the circular cylinder.

A third method for visualizing the twisted cubic is to 
realize that it also lies on the cylinder z = x3.

So it can be viewed 
as the curve of 
intersection of the 
cylinders y = x2 
and z = x3. (See Figure 11.)

Figure 11
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We have seen that an interesting space curve, the helix, occurs 

in the model of DNA.

Another notable example of a space curve in science is the 

trajectory of a positively charged particle in orthogonally 

oriented electric and magnetic fields E and B.

Figure 12

Motion of a charged particle in orthogonally 
oriented electric and magnetic fields
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THANK YOU…
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